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Spherically symmetric solution of gauge supersymmetry 
equations 

D K Ross? 
Physics Department, Iowa State University, Ames, Iowa 5001 1, USA 

Received 18 May 1977 

Abstmct. The Einstein-Maxwell field equations of gauge supersymmetry are solved. We 
find that certain auxiliary gauge fields contribute as much to the energy-momentum tensor 
as the electromagnetic field itself and give rise to negative energy densities, unless they 
grow a superheavy mass by spontaneous symmetry breaking. 

1. introduction 

Supersymmetry (Volkov and Soroka 1973, Wess and Zumino 1974, Zumino 1974, 
Salam and Strathdee 1974a, b, 1975) which considers transformations mixing fer- 
mions and bosons, opens up the possibility that particles other than vector mesons can 
be gauge particles in models unifying two or more fundamental interactions. Salam 
and Strathdee (1974a, b, 1975) introduced the use of linear transformations in an 
8-dimensional superspace, z A = {x”, O i }  with x p  being Bose space-time coordinates 
and 8’ anti-commuting Fermi coordinates, to describe the usual supersymmetry 
transformation. Arnowitt and Nath (Arnowitt et a1 1975, Arnowitt and Nath 1975, 
1976, Nath and Arnowitt 1975, 1976, Nath 1976) extended supersymmetry to be a 
local gauge invariance by considering arbitrary coordinate transformations in super- 
space which leave the line element ds2 = dzAgAB dzB invariant. The Einstein-like 
field equations RAB = 0 with spontaneous symmetry breaking appear capable of 
describing the combined gravity-scalar meson field, gravity-Maxwell field, Maxwell- 
Dirac fields, matter-Yang-Mills fields, and perhaps even fairly realistic strong inter- 
actions using colour gluons depending on the choice of Fermi coordinates 8’ (gauge 
group). The theory is very attractive in that all the fields in the theory are gauge fields 
so that the theory is completely self-sourced. 

In the present paper we will investigate the Einstein-Maxwell case and find 
solutions of the gauge supersymmetry equations corresponding to static, spherical 
symmetry. The Fermi coordinates in this case are doublets of Majorana spinors 8q 
with q = 1,2. We will find that the complete energy-momentum tensor which acts as a 
source of Einstein’s field equations has unphysical negative energy densities when all 
of the auxiliary gauge fields are included, unless further spontaneous symmetry 
breaking occurs. 
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2. Gauge supersymmetry field equations 

The field equations of Arnowitt and Nath (1975) can be written out for the Einstein- 
Maxwell case as 

(1) 

( 2 )  
- m2f = l e  2 ~ A ~ ~ A p  (3) 

F/,A = 0. (4) 

1 A  G,, = -8(p,, - ng,q A ) 

K p V ( p A p ) ~ p ~ , ~ ,  -PAA =ze-F, F,A -if,,v 1 7  A 

and 

Here G,, is the Einstein tensor and FAP the electromagnetic field tensor. p,, andf(x) 
are gauge fields arising in the Bose-Bose sector and Fermi-Fermi sector of the 
expansion of the metric gAB respectively. In (1)-(4), g,, is the usual Einstein metric 
tensor and a semicolon denotes covariant differentiation with respect to this metric. 
Arnowitt and Nath (1976) have shown that spontaneous symmetry breaking really 
occurs for this system so that pWy grows a mass, and a term -mGppY appears on the 
left-hand side of (2). After spontaneous symmetry breaking (1) can be written as 

2 

G,, = 8~G[T,,,,,,-2(K,,(q)-Ig,,KAA(q))-(h,,, -gp,02h)I ( 5 )  
where G =e2/2rrm6 is the gravitational constant and new fields h 3 f/e2 and q,, 
p J e 2  have been introduced for convenience. Note that a sign misprint in Arnowitt 
and Nath (1975) has been corrected in front of the h term in (5) .  In terms of h and q,Ly 
we have 

(6) 
1 K,, (q ) - m &,, = %,"FVA - zh 9,v 

and 
2 0 h = -~F"F,,. (7) 

To put ( 5 )  in the form given, with the electromagnetic energy-momentum tensor 
correctly appearing on the right-hand side, (3) was used above. 

Gravitation and electromagnetism can only be said to be unified correctly in this 
formalism, if i t  can be shown that the KNY and h terms in ( 5 )  make no contribution to 
observable physics. We first note that the divergences of the K,, and h terms in ( 5 )  
vanish identically in the flat-space limit. In curved space these divergences do not 
vanish (energy is not conserved) but fields of order G2 arising from higher-order terms 
in gAB have already been neglected on the right-hand side of ( 5 )  and these fields will 
correctly maintain energy conservation (Arnowitt and Nath 1977, private com- 
munication). Since the divergences identically vanish in flat space, no contribution 
will be made to the Maxwell field equations by these fields. It remains to be seen 
whether these fields will contribute to the total energy-momentum tensor and to the 
Lorentz group generators. 

3. Solution of gauge supersymmetry equations 

We want a solution of equations (4)-(7). Since we are particularly interested in 
whether or not the KcLy and h fields contribute to the total energy-momentum tensor 
in (3, we will only require the qcLy and h fields to zeroth order in G or equivalently to 
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zeroth order in l / m &  It would be inconsistent to work to higher order in calculating 
the contributions to T,,(,,(total) since fields of order G2 have already been neglected in 
(5) as we mentioned above. This means that flat-space equations can be used to 
calculate q,,,, h, and FPY. 

We can write down the solution to (4) in flat space as 

- F ~ ~  = F~~ = e / r 2 ;  all other F,,, = 0. (8) 

We assume a (-1, +1, + I ,  +1) signature for the metric. Using (8), equation (7) now 
becomes U2h = e 2 / r 4 .  If we assume time independence we have the flat-space solu- 
tion 

h = ( e 2 / 2 r 2 )  - (A/r ) .  (9) 
We have required h to go to zero as r + 03 so that terms which are only functions of the 
angles and a In r term have been omitted. The A term in (9) is the solution of the 
homogeneous equation with A an arbitrary constant. A also contains a contribution 
proportional to lim,r+O ( l / r ’ )  = 00 due to our assumed (unphysical) point charge. We 
can avoid these difficulties by going to a more smeared out charge as we do below in 
our discussion of the Lorentz group generators. 

Now that we have h, we can plug (8) and (9) into (6) and solve for 
assume q,, is diagonal and we have flat space then (6) can be written as 

1 2  2 -q& - qO0- - m 4 0 0  = So0 r 

where S,, denotes the source terms on the right-hand side of (6). To lowest non-zero 
order in l / m &  we have simply 

(14) 2 q,u = -S+,,/mG. 

We could write down a more exact solution to (10)-(13) but since G terms have 
already been thrown away because we are in flat space, higher-order l / m &  terms 
cannot be consistently written down in the solution (14). The solution (14) for qp, 
implies that K,,,(q) = 0 to lowest order in l / m &  and we have that the contribution of 

trouble and we shall forget it henceforth. 

tensor in (9, namely 

K ,,, -1 ’g,, K ”  ,, to T,,, in (5) to the required order is zero. Thus the qWu field causes no 

Let us return to the h field and calculate its contribution to the energy-momentum 

T p u ( h )  =-(hi,,, - g w y 0 2 h ) .  (15) 
Using (9) gives 

+ 4 r 2  - 2 r 3 A / e 2  
+ 4 r 2  sin20 -PA s i n 2 ~ / e 2  . 
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We note that the A term in (9) does not contribute to Too but does contribute to the 
other diagonal elements of TMY. The energy-momentum term of the electromagnetic 
(EM) field for comparison is 

\ 

The total energy-momentum tensor which contributes to Einstein’s equations is just 
(16) plus (17). In particular 

where the -2 is the h field contribution and the +l is the EM field contribution. The h 
field contribution is clearly as large as the EM contribution and is negative. It certainly 
cultnot be neglected in the symmetry broken field equations. We note that the h field 
equation (7) differs significantly from the qMY field equation (6) since (7) does not 
contain mi and (6) does. This is why qwy makes no contribution to Tpu(total) but h 
does. 

4. Discussion and conclusions 

Equation (18) says that the h field makes a contribution to the energy-momentum 
tensor as large as and of the same form as the electromagnetic field contribution itself. 
Since (3) was used to manipulate (5 )  into a form where TMu(EM) appears as the source 
of Einstein’s equations, it is clear that electromagnetism and gravitation have not been 
unified in a satisfactory way. In addition since TOO(total)<O we have unphysical 
negative energy densities and the possibility of extracting an infinite amount of energy 
from a given volume. The Newtonian potential, of course, also has a reversed sign 
corresponding to a negative effective mass. 

It is interesting to look at the contribution of the h field to the Lorentz group 
generators. In particular in flat space we have 

where the i is summed only over 1,2,3.  Using Gauss’s theorem to convert (19) into a 
surface integral then suggests that if h drops off fast enough for large r, there will be no 
contribution to po. Unfortunately for the point charge considered above, h‘i;i = e2/r4. 
Integrating this over all space clearly gives a non-zero contribution in (19) exactly as 
the electromagnetic field does (the radial and charge dependences are identical). 
More generally, we can avoid the singular behaviour of our assumed point charge at 
the origin by writing the asymptotic solution of (7) as 

h =(8m)-’ J d3x’FAB(x‘)FAB(x’). (20) 

Then h clearly does not drop off fast enough at large r to avoid a contribution to (19). 



Gauge supersymmetry solution 2035 

The Arnowitt and Nath gauge supersymmetry formalism is almost compellingly 
elegant. The above serious difficulties suggest that something is wrong, not with the 
basic formalism, but with the detailed way in which the spontaneous symmetry 
breaking occurs. This is indeed found to be the case. Contrary to their published 
work, the most recent (unpublished) work of Arnowitt and Nath (1977) shows that the 
h field also grows a superheavy mass from spontaneous symmetry breaking exactly 
like p Thus (7 )  acquires a mAh term and to lowest order h is proportional to 
(l /mG)FABFAs. Thus h becomes a higher-order field curing the difficulties cited 
above. The interesting point in the present paper, then, is that we have shown that 
this mass growth of h is absolutely necessary if we are to have an acceptable unification 
of gravitation and electromagnetism. The fact that this necessary mass growth follows 
from spontaneous symmetry breaking in this very close knit formalism is particularly 
satisfying. 

Y' 
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